

Biomarkers and anal dysplasia: How can we use them?

F. Dias Goncalves Lima, MD

Amsterdam University Medical Centers, The Netherlands

DISCLOSURES

• Nothing to disclose

INTRODUCTION

- ANCHOR: groundbreaking proof that treating HSIL can prevent anal cancer
- IANS guidelines on screening
- Challenges in clinical practice:
 - Limited capacity
 - HRA & treatments burden

How can we use biomarkers?

Palefsky et al. N Engl J Med. 2022, Stier et al. Int J Cancer. 2024

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

1. Cancer-Risk Stratification

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

CASE: PATIENT A

• Man, 41yo

History

- HIV
- MSM
- Asymptomatic

DARE: normal

HRA: HSIL \rightarrow start electrocautery (EC) Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

CLINICAL COURSE PATIENT A

Evaluation na 2x EC: Persistent HSIL

 \rightarrow Active monitoring

CLINICAL COURSE PATIENT A

Evaluation after 2y active monitoring:

• HSIL in complete regression

CASE: PATIENT B

• Man, 53yo

History:

- HIV
- MSM
- Asymptomatic

DARE: normal

HRA: HSIL

Evaluation after 2x EC: clinical improvement HSIL

 \rightarrow Once more 2x EC

CLINICAL COURSE PATIENT B

Emergency visit 5 months after 4th EC :

- Pain, bright red blood loss
- DARE:
 - Right posterior intra-anal: 3cm hard papule
 - Painful to touch
 - Visible blood

HRA

0

Ŷ

PA: High suspicion for invasive squamous cell carcinoma

MRI + PET/CT: cT2N1M0 anal carcinoma

Therapy: Chemoradiation

Challenges in Treatment

• Large proportion of anal cancers not prevented by treatment (43% in ANCHOR)

 \rightarrow Treat more (intensively)

- Number needed to treat to prevent one cancer is high (438 in ANCHOR)
 - 30% of HSIL regresses spontaneously in 1 year

→ Treat less (often)

NOT ALL HSIL ARE EQUAL

ROLE OF BIOMARKERS: CANCER RISK STRATIFICATION

Differentiating between HSIL likely to **regress** and HSIL likely to **progress to cancer**

DNA METHYLATION MARKERS

ANAL CARCINOGENESIS: INCREASE IN DNA METHYLATION

(n=30)

SCC

Van Der Zee et al. CID 2021

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

METHYLATION IS HIGH IN HSIL PROGRESSING TO CANCER

		HIV	Age at final										
Case	Sex	status	diagnosis (year)	Preceding HGAIN						Final diagnosis			
1	М	pos	62	Methylation result:				-	1	2	3		
				Diagnosis:					AIN3	AIN3	≈ SCC		
				t=					-12M	-7M	0		
2	м	pos	59	Methylation result:					1	2	3a	3b	
				Diagnosis:					AIN3	AIN2	≈ SCC	AIN2	
				t=					-5.5M	-2M	0	0	
3	F	neg	49	Methylation result:						1	2		
				Diagnosis:						AIN3	SCC		
				t=						-5M	0		
4	м	neg	60	Methylation result:					1	2	3		
				Diagnosis:					AIN3	≈ SCC	SCC		
				t=					-5M	-2.5M	0		
5	м	pos	51	Methylation result:						1	2		
				Diagnosis:						AIN3	≈ SCC		
				t=						-3M	0		
6	м	pos	47	Methylation result:						1	2		
				Diagnosis:						AIN2	SCC		
				t=						-5M	0		
7	м	pos	51	Methylation result:	1	2	3	4	5	6	7a	7b	7c
				Diagnosis:	AIN3	AIN2	AIN3	AIN2	AIN2	AIN3	≈ SCC	SCC	SCC
				t=	-28M	-20M	-18M	-16.5	-9.5M	-6M	0	0	0
8	м	pos	58	Methylation result:			1 a	1b	2	3	4a	4b	4c
				Diagnosis:			AIN3	AIN2	AIN3	AIN2	≈ SCC	≈ SCC	≈ SCC
				t=			-9M	-9M	-2.5M	-2M	0	0	0
9	м	pos	62	Methylation result:				1	2	3	4		
				Diagnosis:				AIN2	AIN2	≈ SCC	SCC		
				t=				-42M	-30M	-0.5M	0		
10	м	pos	62	Methylation result:				1	2	3	4		
				Diagnosis:				AIN2	AIN2	AIN2	≈ SCC		
				t=				-24M	-13M	-3M	0		

Low methylation

High Methylation ASCL1/ZNF582 methylation predicted probability

Unpublished results. Please do not distribute

 \bigcirc

Van Der Zee et al. CID 2021; Rozemeijer et al. Tumor Virus Res, 2023

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

*PreCursor-M AnoGYN

Methylation levels

Steenbergen et al. Nat Rev Cancer 2014

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

THRESHOLD SETTING: eDELPHI SURVEY

- Experts from around the world
- Multiple survey rounds
- Tool for calculations

Results Round 1:

- Median Sensitivity = 89%
- Mediar

eDELPHI ROUND 2 IS STILL ONGOING

* Question 3

For the detection of HSIL with a high chance of progression to cancer in biopsies, the median of participants answered that: - the minimally acceptable sensitivity was 89%, and - the minimally acceptable specificity was 87%.

This translates in the following theoretical scenario:

Statement: The above mentioned sensitivity and specificity and corresponding numbers of false and true positives and negatives are acceptable. A lower sensitivity or specificity would be insufficient.

Do you agree with this statement?

Strongly Disagree	Moderately Disagree	Neutral	Moderately Agree	Strongly Agree	Do not know
0	0	0	0	0	0

THRESHOLD SETTING

- At least 89% sensitivity for high-risk HSIL
- As high as possible to • increase specificity

ASCL1/ZNF582 methylation predicted probability

0

Dias Goncalves Lima et al. manuscript in preparation: Rozemeijer et al. Tumor Virus Res, 2023

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

*PreCursor-M AnoGYN

BACK TO THE CASES

Biomarkers could stratify HSIL by its risk of progression to cancer and determine propper treatment indication

ASCL1/ZNF582 methylation predicted probability

 \bigcirc

2 years

CLINICAL VALIDATION: MARINE STUDY

Outcome at 2 years: Regression No dysplasia/ HSIL LSIL

IANS next Scientific Meeting will be in London in 2025!

Dias Goncalves Lima et al. BMJ Open, 2022

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

2. Screening

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

CASE: SCREENING IN THE NETHERLANDS

- 18 million people
- All MSMLWH>35yo \rightarrow HRA indication
- Now: screening with swabs
- Next step: Screening of other risk groups

Challenges in Screening: Capacity

NKR register; Marcus et al. BMC Public Health 2013; Stichting HIV Monitoring

Now: 13,000 MSMLWH >35y

ŇŇŇŇŇŇŇŇŇ ŇŇŇ

Future: 13,000 MSMLWH >35y 10,000 vulva (pre-)cancer 6,000 PLWH >45y 120,000 MSM without HIV >45y 5,000 organ transplant recipients = 154,000

Ŷ

HSIL detection: **89%** HRA referral: **62%**

Rozemeijer et al, manuscript in preparation

HSIL

no HSIL

HSIL detection: **44%** HRA referral: **18%**

Rozemeijer et al, manuscript in preparation

HSIL

no HSIL

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

hrHPV + cytology (ASCUS) co-testing

HSIL detection: **64%** HRA referral: **41%**

Rozemeijer et al, manuscript in preparation

HSIL

no HSIL

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

ROLE OF BIOMARKERS: TARGETED SCREENING

FEASIBILITY OF METHYLATION ANALYSIS IN ANAL SWABS

Dias Goncalves Lima et al. under review

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

METHYLATION OF ANAL BIOPSIES WAS REFLECTED IN ANAL SWABS

- **Detect highest-risk lesions** ullet
- More specific screening ullet
- Quality control after HRA •

Dias Goncalves Lima et al. under review

Biomarkers and anal dysplasia: How can we use them? | F. Dias Goncalves Lima, MD | 16 October 2024

Unpublished results. Please do not distribute

 \bigcirc

Biopsies

• Tumor immune microenvironment

Swabs

• New markers

General

- What does the patient think?
- Cost effectiveness

TAKE TO WORK

Screening for- and treating HSIL can prevent anal cancer

However,

- Most HSIL does not progress to cancer
- Some HSIL regress spontaneously
- Treating HSIL sometimes fails to prevent anal cancer
- Installing efficient large-scale screening is challenging

1. Cancer-risk stratification of HSIL for treatment indication

2. Improving screening efficiency by targeting highrisk lesions

ACKNOWLEDGEMENTS

All Participants that donated bodily material

Pathology

Kirsten Rozemeijer Ramon van der Zee Renske Steenbergen Timo ter Braak Stèfanie Dick Carel van Noesel Yara van den Burgt

Infectious Diseases Jan Prins

Dermatology

Henry de Vries Esther Kuyvenhoven Peter Tabak Karien Gosens Matthijs Siegenbeek van Heukelom Louise Saffrie Gitta Giskes Marcella Loods Hayrenic Simonean

Data Science & Epidemiology Birgit Lissenberg-Witte Jürgen Claesen Mark van de Wiel Radiotherapy Debby Geijsen Ferdinand Wit Philip Meijnen Baukelien van Triest

<u>GGD Amsterdam</u> Maarten Schim van der Loeff Vita Jongen

OLVG Locatie Oost Irina Caĭro Angelique Toonen Rob Klemans

<u>DC Klinieken Lairesse</u> Arne van Eeden Hans-Erik Nobel

<u>DermaHaven</u> Doortje van den Dungen

<u>Maasziekenhuis Pantein</u> Manon Marneef Koen van Dongen Marjolein Blussée Olivier Richel

<u>Funding</u>: KWF Dutch Cancer Society TKI - Health-Holland AMC PhD Scholarship 2020 Cancer Center Amsterdam Amsterdam Infection & Immunity

eDELPHI ROUND 2 IS STILL ONGOING

* Question 3

For the detection of HSIL with a high chance of progression to cancer in biopsies, the median of participants answered that: - the minimally acceptable sensitivity was 89%, and - the minimally acceptable specificity was 87%.

This translates in the following theoretical scenario:

Statement: The above mentioned sensitivity and specificity and corresponding numbers of false and true positives and negatives are acceptable. A lower sensitivity or specificity would be insufficient.

Do you agree with this statement?

Strongly Disagree	Moderately Disagree	Neutral	Moderately Agree	Strongly Agree	Do not know
0	0	0	0	0	0

