MPOX: Epidemiology, Clinical Presentation, Treatment, and Prevention

Dr. Oriol Mitjà Cap de Secció, Infeccions Comunitaries HUGTiP, Badalona

 Fundació
Lluita contra les Infeccions

01. EPIDEMIOLOGY

02. CLINICAL PRESENTATION AND TREATMENT

03. VACCINE EFFECTIVENESS

#39, STAGE THE SETTING: THE EPIDEMIOLOGY OF THE MPOX VIRUS John Brooks

#209, HOUSEHOLD TRANSMISSION OF MPOX TO CHILDREN AND ADOLESCENTS – Bazzy A **#173,** MPOX IN PEOPLE LIVING WITH HIV AND CD4 COUNTS < 350 CELLS/MM3: A GLOBAL CASE SERIES -Chloe orkin

#40, MOLECULAR PATHOGENESIS AND THERAPEUTIC TARGETS FOR MPOX VIRUS Stuart N. Isaacs **#36**, MPOX PREVENTION - Jade Ghosn

#208, IMPACT OF VACCINATION ON MPOX INCIDENCE IN MSM ON PREP IN THE ANRS 174 DOXYVAC TRIAL - Jade Ghosn

#207, EFFECTIVENESS OF SMALLPOX VACCINATION TO PREVENT MPOX IN MILITARY PERSONNEL – Boghuma Titanji

01. EPIDEMIOLOGY

02. CLINICAL PRESENTATION AND TREATMENT

03. VACCINE EFFECTIVENESS

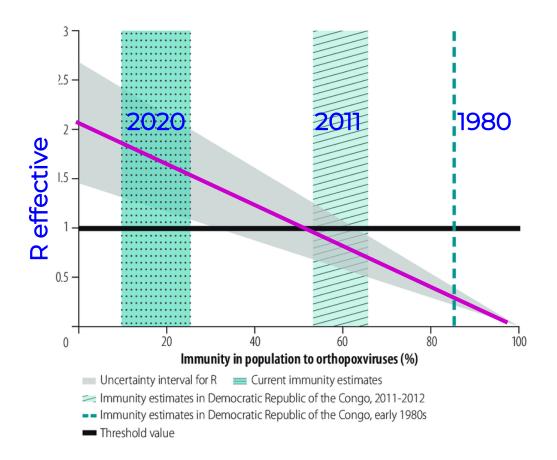
#39, STAGE THE SETTING: THE EPIDEMIOLOGY OF THE MPOX VIRUS John Brooks

#209, HOUSEHOLD TRANSMISSION OF MPOX TO CHILDREN AND ADOLESCENTS – Bazzy A **#173,** MPOX IN PEOPLE LIVING WITH HIV AND CD4 COUNTS < 350 CELLS/MM3: A GLOBAL CASE SERIES -Chloe orkin

#40, MOLECULAR PATHOGENESIS AND THERAPEUTIC TARGETS FOR MPOX VIRUS Stuart N. Isaacs **#36**, MPOX PREVENTION - Jade Ghosn

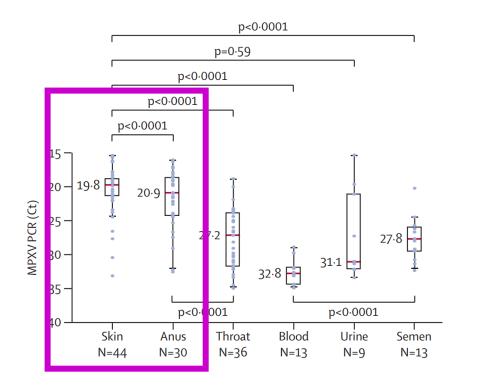
#208, IMPACT OF VACCINATION ON MPOX INCIDENCE IN MSM ON PREP IN THE ANRS 174 DOXYVAC TRIAL - Jade Ghosn

#207, EFFECTIVENESS OF SMALLPOX VACCINATION TO PREVENT MPOX IN MILITARY PERSONNEL – Boghuma Titanji


Mpox case count: 86,173 as of 3-mar-2023

Country	Case count	Number of deaths		Countries		
United States	30,193		or deaths			
Brazil	10,808		1	Cuba, Belgium, Czechia, I Sudan, Mozambique	ndia, CAF	
Spain	7,538		2	Chile, Argentina		
Colombia	4,080		3	Ecuador, Spain, Cameroo	n	
Mexico	3,828		4	Ghana, Mexico		
Peru	3,752		8	Nigeria		
			15	Brazil, Peru		
United kingdom	3,735		34	United States		

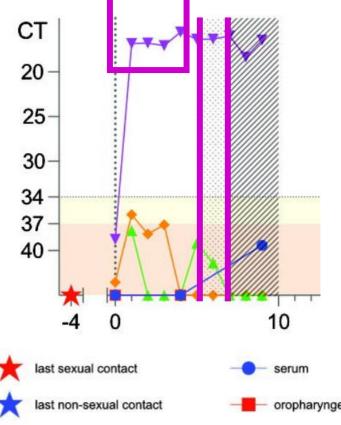
In absence of immunity there is a risk for an outbreak if the number of contacts is higher than 14


Rt effective

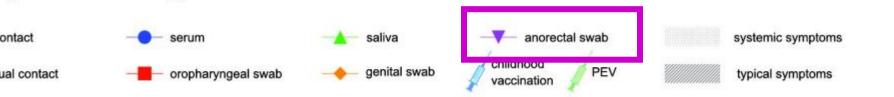
- Ro
- Population immunity
- Population interaction

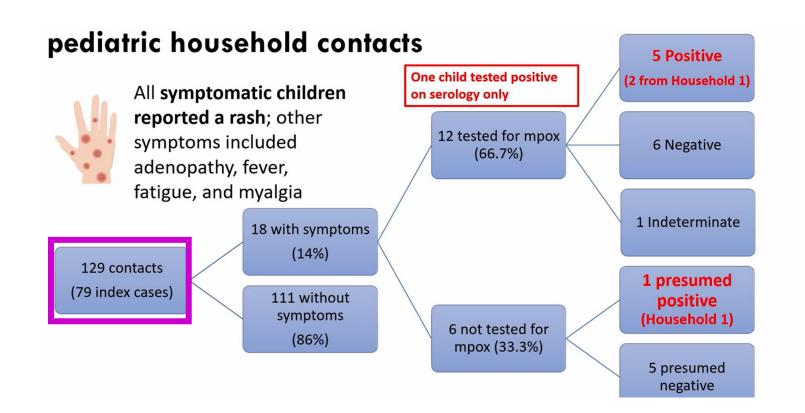


Exposure of skin and anorectum carries greatest risk of transmitting infection



1663 samples were collected from 77 study participants


Some people can transmit mpox before they develop symptomatic illness


Prospective follow up of 25 individuals after high-risk exposure, daily swabs, 13 had MPXV PCR+ results

High concentrations of DNA were detectable in some 5/6 patients with symptoms up to 4 days earlier

Another study on asymptomatic carriage, 13/200 (6,5%) MPXV PCR+

Contact tracing outcomes of 129 children

RESULTS

6 infected pediatric contacts were identified

Attack rate 4.7%

Range of 2 -9 years old

Children had direct contact with parenting adults

Mpox epidemiology

- MPXV DNA is detected more frequently, at higher viral loads and during more time in the skin compared to other body parts.
- Subclinical or **asymptomatic** infection could contribute to outbreak spread.
- Risk of transmission can vary in diferent settings and household transmission has been rare in 2022.

01. EPIDEMIOLOGY

02. CLINICAL PRESENTATION AND TREATMENT

03. VACCINE EFFECTIVENESS

#39, STAGE THE SETTING: THE EPIDEMIOLOGY OF THE MPOX VIRUS John Brooks

#209, HOUSEHOLD TRANSMISSION OF MPOX TO CHILDREN AND ADOLESCENTS – Bazzy A **#173,** MPOX IN PEOPLE LIVING WITH HIV AND CD4 COUNTS < 350 CELLS/MM3: A GLOBAL CASE SERIES -Chloe orkin

#40, MOLECULAR PATHOGENESIS AND THERAPEUTIC TARGETS FOR MPOX VIRUS Stuart N. Isaacs **#36**, MPOX PREVENTION - Jade Ghosn

#208, IMPACT OF VACCINATION ON MPOX INCIDENCE IN MSM ON PREP IN THE ANRS 174 DOXYVAC TRIAL - Jade Ghosn

#207, EFFECTIVENESS OF SMALLPOX VACCINATION TO PREVENT MPOX IN MILITARY PERSONNEL – Boghuma Titanji

Clinical presentation of human mpox cases in Spain

Mpox in people with advanced HIV infection, Global Series

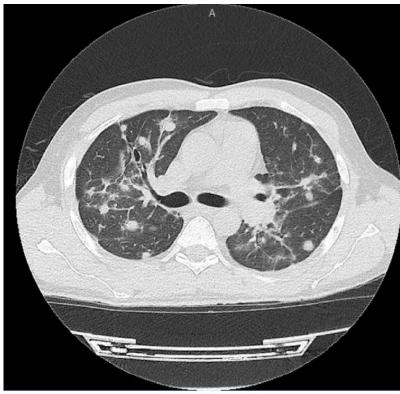
Day 44

Day 33

Day 33

Day 44

Source: Tarin Vicente et al. Lancet 2022. Mitja O et al. Lancet 2023.


#173, MPOX IN PEOPLE LIVING WITH HIV AND CD4 COUNTS < 350 CELLS/MM3: A GLOBAL CASE SERIES Chloe Orkin

Lancet 2023;


Perivascular nodules with MPXV PCR + in BAL

Perivascular nodules with MPXV PCR + in transthoracic biopsy

Ground-glass opacification and emphysematous changes with MPXV PCR + in BAL

Necrotizing mpox as a new form of disease

I	Total (n=382)	CD4 <100 cells per mm ^{3*} (n=85)	CD4 100–200 cells per mm³ (n=94)	CD4 201–300 cells per mm³ (n=128)	CD4 >300 cells per mm³ (n=75)
Median age, years	35 (30-43)	35 (32–43)	35 (29–42)	34 (31–42)	36 (30-44)
Newly diagnosed with HIV infection	33 (9%)	15 (18%)	8 (9%)	3 (2%)	7 (9%)
CD4 cell count (cells per mm³)	211 (117-291)	47 (27-77)	156 (125–184)	259 (221–280)	326 (316-338)
CD4 count among 27 people who died, (cells per mm³)	35 (IQR 24-100)	32 (20–64)	118 (112–134)		
HIV viral load strata RNA	copies per mL				
Not available	28 (7%)	11 (13%)	4 (4%)	10 (8%)	3 (4%)
<50	193 (51%)	14 (16%)	50 (53%)	80 (63%)	49 (65%)
50-200	26 (7%)	3 (4%)	6 (6%)	8 (6%)	9 (12%)
201–log4	30 (8%)	10 (12%)	6 (6%)	10 (8%)	4 (5%)
≥log4	105 (27%)	47 (55%)	28 (30%)	20 (16%)	10 <mark>(</mark> 13%)

Mpox rash presentation					
Peak number of skin lesions	15 (8–35)	30 (15–100)	20 (12-35)	12 (6–20)	10 (4–15)
Rash duration in days	23 (18–33)	31 (21-45)	26 (19–40)	21 (16–28)	21 (15–30)

<300 <100 A Complications stratified by CD4 cell count 58% **9%** Dermatological Respiratory 29% 0% 11% 1% CNS 44% 9% Bacterial Ocular 15% 1% 27% 7% Gastrointestinal 53% 28% Rectal Oropharyngeal CD4 cell count strata (cells per mm³) ≤100 101-200 Genitourinary 201-300 301-350 60 100 10 20 30 40 50 0 Prevalence (%)

#173, MPOX IN PEOPLE LIVING WITH HIV AND CD4 COUNTS < 350 CELLS/MM3: A GLOBAL CASE SERIES Chloe Orkin

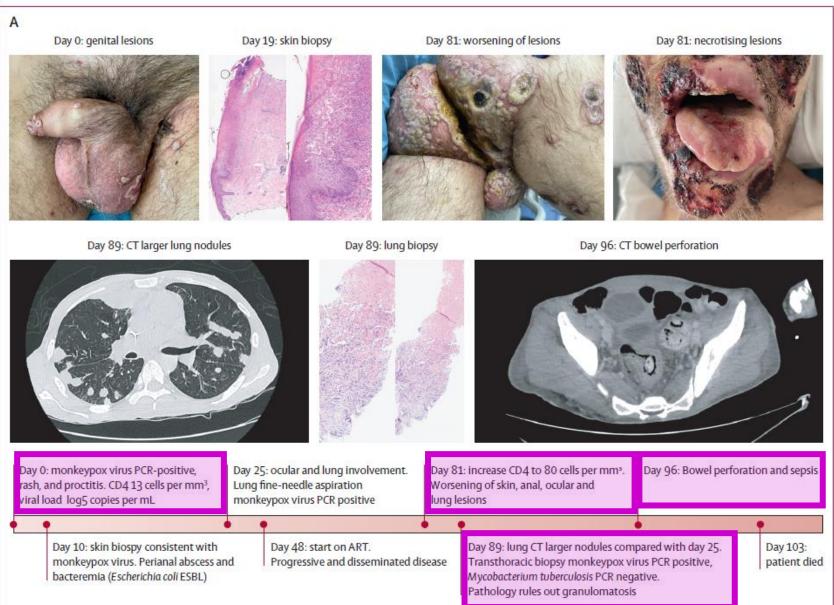


Figure 1: Chronological progression of mpox facial rash (patient one)

(A) 1 week after symptom onset: ulcerated vesiculopapular rash involving the malar areas and nasal bridge. Surrounding umbilicated papules. Left-sided periorbital oedema. Image courtesy of patient submission. (B) 3 weeks after symptom onset: confluent necrotic facial rash sparing the forehead with overlying honey-colored exudate. Upper and lower eyelids are oedematous, fibrotic, and immobile. There is substantial angio-oedema of the lips. (C) 7 weeks after symptom onset: prominent eschars of the nasal and malar aspects. Increased purulent exudation overlying necrotic skin. Progressive ulceration of the eyelids and distortion of periorbital contour. (D) 11 weeks after symptom onset: panfacial skin sloughing with obfuscation of baseline features. Patient passed away 1 week later.

#173, MPOX IN PEOPLE LIVING WITH HIV AND CD4 COUNTS < 350 CELLS/MM3: A GLOBAL CASE SERIES Chloe Orkin

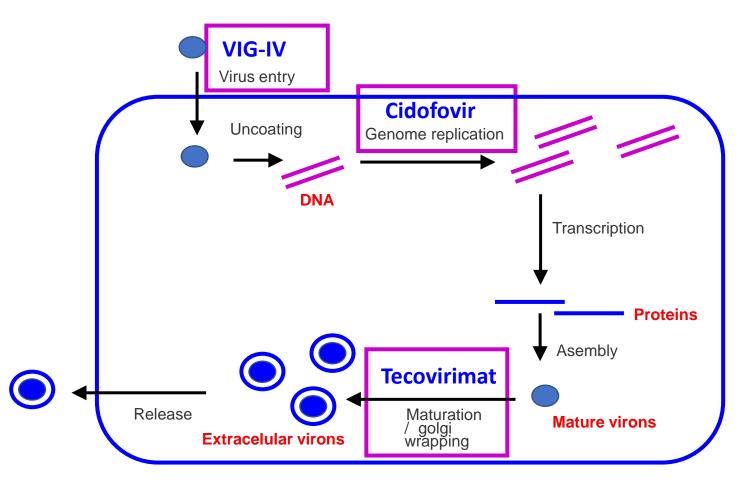
	Total (n=382)	CD4 <100 cells per mm ^{3*} (n=85)	CD4 100–200 cells per mm ³ (n=94)	CD4 201–300 cells per mm³ (n=128)	CD4 >300 cell per mm³ (n=75)
Highest care level					
Outpatient	275 (72%)	32 (38%)	69 (73%)	111 (87%)	63 (84%)
Hospitalisation in general ward	73 (19%)	26 (31%)	19 (20%)	16 (13%)	12 (16%)
Intensive care unit§	34 (9%)	27 (32%)	6 (6%)	1 (1%)	0
Ultimate Outcome					
Death§	27 (7%)	23 (27%)	4 (4%)	0	0

15% (27/179) death rate when CD4 count <200 cells/mm3; median time to death 47 days

				-
Total	CD4	CD4	CD4	CD4
(n=382)	<100 cells	100–200 cells	201-300 cells	>300 cells
	per mm³*	per mm³	per mm³	per mm³
	(n=85)	(n=94)	(n=128)	(n=75)

(Continued from previous page)

Antimicrobial and antiviral treatment


Antibiotics	144 (38%)	52 (61%)	34 (36%)	38 (30%)	20 (27%)
Tecovirimat (oral)	52 (14%)	21 (25%)	11 (12%)	15 (12%)	5 (7%)
Tecovirimat (intravenous)	15 (4%)	13 (15%)	1 (1%)	1 (1%)	0

11/30 (33%) people CD4 <100 died despite receiving Tecovirimat

ienotypic resistance to ecovirimat, n					
Samples sequenced	5	4	1	0	0
Presence of F13L mutations conferring resistance	3	3	0	0	0

Immune restitution inflam	nmatory syndro	ome			
Antiretroviral started or restarted	85 (22%)	40 (47%)	23 (24%)	15 (12%)	7 (9%)
Deterioration consistent with	21 (5%)	15 (18%)	6 (6%)	0	0
immune restitution inflammatory svndrome					14 days from I <mark>) mortality</mark>
		rate			

Tecovirimat has low barrier to resistance and may be less efficacious in immunocompromised

Source: Brosius et al. medRxiv

Mpox clinical presentation and treatment

- Necrotizing mpox behaves as an AIDS-defining condition
- Recommendations for people with HIV and CD4 <200 and development of guidelines with best practices:
 - Every case of mpox should be tested for HIV and CD4.
 - Prioritize for tecovirimat (possibly to every case CD4<200), and consider adding a second antiviral agent.
 - Use antibiotic coverage early in the course of an infection.
 - Best chance of curing infection is a funcional immune system, but be aware of potential of deterioration related to IRIS
- Data on the efficacy of Tecovirimat for mpox is limited (STOMP-US, PLATINIUM-UK, PALM007-RDC) and PROTECT-HUGTIP (Prioritize Tecovirimat for Advanced HIV).

01. EPIDEMIOLOGY

02. CLINICAL PRESENTATION AND TREATMENT

03. VACCINE EFFECTIVENESS

#39, STAGE THE SETTING: THE EPIDEMIOLOGY OF THE MPOX VIRUS John Brooks

#209, HOUSEHOLD TRANSMISSION OF MPOX TO CHILDREN AND ADOLESCENTS – Bazzy A **#173,** MPOX IN PEOPLE LIVING WITH HIV AND CD4 COUNTS < 350 CELLS/MM3: A GLOBAL CASE SERIES -Chloe orkin

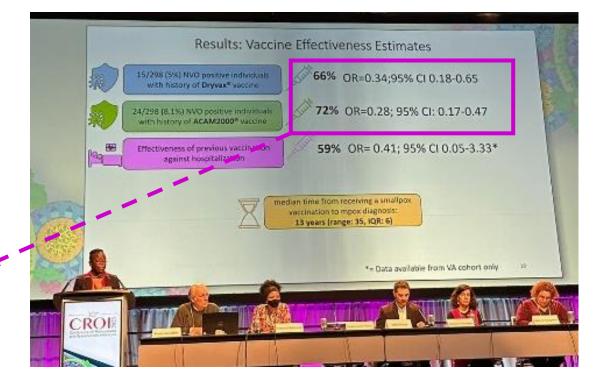
#40, MOLECULAR PATHOGENESIS AND THERAPEUTIC TARGETS FOR MPOX VIRUS Stuart N. Isaacs **#36**, MPOX **PREVENTION** - Jade Ghosn

#208, IMPACT OF VACCINATION ON MPOX INCIDENCE IN MSM ON PREP IN THE ANRS 174 DOXYVAC TRIAL - Jade Ghosn

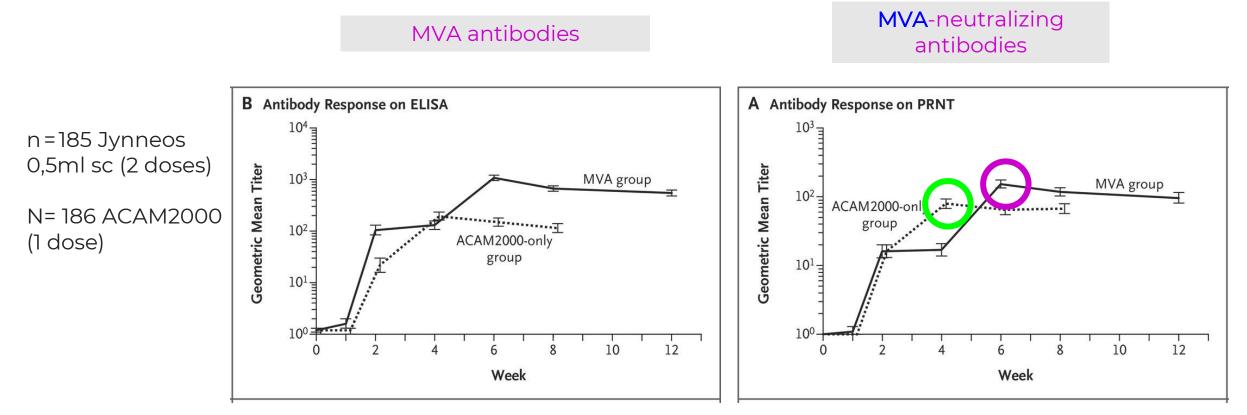
#207, EFFECTIVENESS OF SMALLPOX VACCINATION TO PREVENT MPOX IN MILITARY PERSONNEL – Boghuma Titanji

High effectiveness of first and second generation vaccines, 66% and 72%

METHODS:

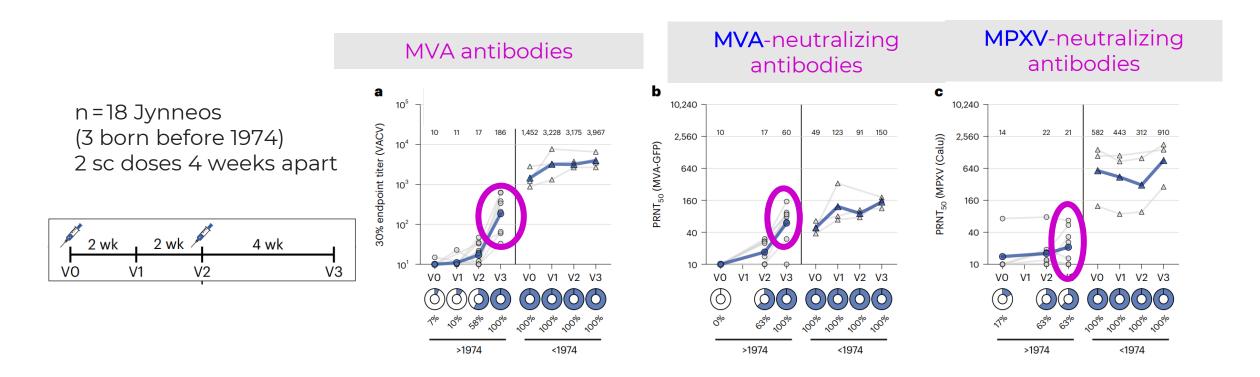

- Design: analysis using military health data
- Population: US military personnel (vaccinated in the period 2002-2017)

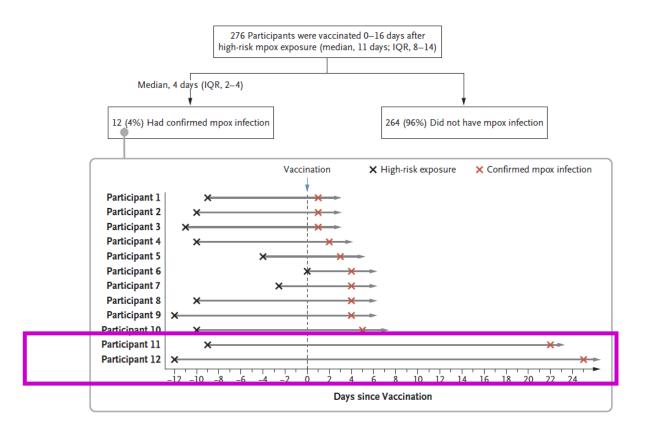
RESULTS:


- 1007 people tested, including 298 previously vaccinated with Dryvax or ACAM 2000
- **300** positive for mpox

15 positive Dryvax (OR 0,34), VE 66%

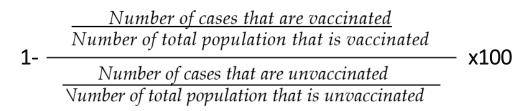
24 positive ACAM2000 (OR 0,28), VE 72%


Third generation: high level of VAC neutralizing antibodies after two doses


Association with a clinical surrogate marker of cutaneous reactions induced by poxvirus challenge

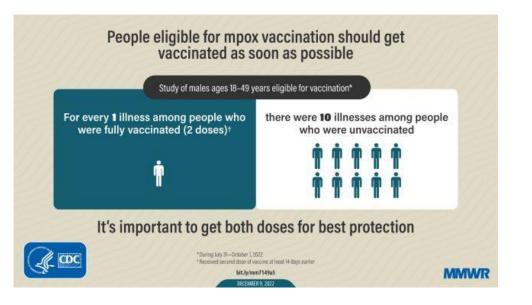
Source: Pittman et al. NEJM 2019.

Third generation: low level of MPXV neutralizing antibodies


Breakthrough infections after PEP JYNNEOS sc. 0,5ml dose among 276 participants

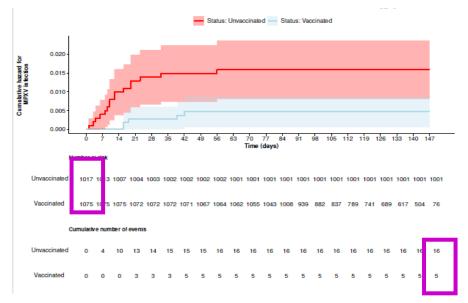
Vaccine performance using case-coverage method in 43 US jurisdictions

METHODS


- Design: Case -coverage method
- Population: Mpox cases by vaccination status
- Outcome: Incidence risk ratio

RESULTS

- 9,544 reported mpox cases, 1,224 in vaccinated and 8,320 in unvaccinated
- Mpox incidence was higher among unvaccinated compared to vaccinated


With 1 dose IRR 7,4 (95CI 6,0-9,1) With 2 doses IRR 9.6 (95% CI 6,9-13,2)

Vaccine effectiveness was 86% in a cohort study (n 2054) in Israel

METHODS:

- Vaccination: Single, sc MVA-BN
- Design: Retrospective observational cohort of data from electronic records.
- Population: Dispensed HIV-PreP or diagnosed with HIV and one STI
- Primary endpoint: Mpox diagnosis

Hazard Rate 0.14 (0.05-0.41); VE 86%

Source: Sagy et al. Nature Medicine 2022.

		Unvaccinated N (%)	Vaccinated N (%)	HR (95% CI)
		1017 (50%)	1037 (50%)	
Γ	Tel Aviv District	406 (40%)	783 (76%)	2,2 (1,9-2,6)
	Low socio demographic status	501 (49%)	326 (31%)	0,8 (0,7-0,9)
	History of HIV	511 (50%)	136 (13%)	0,46 (0,3-0,6)

Vaccine effectiveness ranges from 66% - 83% for full vaccination in case-control studies

METHODS:

- **Design:** Case -control
- Population:
 - Case patients are people with an mpox diagnosis;
 - Control patients are people dispensed HIV-PreP or with an incident HIV.

	Cases with mpox	Controls	Adjusted* VE (95% CI)					
Full vaccination (2 doses)								
Epic Cosmos case-control study n 11,232	<mark>25</mark> /2913	<mark>335</mark> /8319	<mark>66%</mark> (47%- 78%)		-			
Multi-jurisdictional case-control n423	<mark>14</mark> /167	122 /256	76% (48%-89%)		-			-
New York State case-control study n507	<mark>2</mark> /252	<mark>21</mark> /255	83% (22%-96%)					_
		•		1				
Partial vaccination (1 dose)								
Epic Cosmos case-control study n 11,232	146 /2913	1000 /8319	36% (22%-47%)	-	—	-		
New York State case-control study n507	<mark>10</mark> /252	<mark>24</mark> /255	65% (21%-85%)		_			_
			(0 20	40	60	80	

Vaccine Effectiveness (%)

Mpox vaccine effectiveness

- There are two available orthopoxvirus vaccines: one is a **replication-deficient modified vaccinia Ankara (MVA)** vaccine, and the other is a **replicationcompetent smallpox vaccine (ACAM2000)**.
- Estimations from cohort and case control studies show vaccine effectiveness ranges between 66-86%.
- Studies are being conducted to better control for bias, eg., TraX study-Australia, REMAIN study-HGTiP (Trial Emulation)

STEPS FORWARD

- We are designing the PROTECT study (Prioritize Tecovirimat for Advanced HIV) – RCT to assess efficacy of Tecoviritmat in Latin-America.
- We are implementing the **REMAIN study (Breaktrhough infection following Mpox vaccination)** – Trial emulation study to assess efficacy of MVA-BN.
- We are also implementing the TREP-AB trial (Neuropenetrative antibiotics for syphilis) – RCT to asses efficacy of linezolid.

We'd love to work with you:

Please contact us : <u>csuner@lluita.org</u> <u>aalemany@lluita.org</u> <u>omitja@lluita.org</u>

Skin NTDs and STI Research Unit, HGTiP

Gràcies

Thanks

