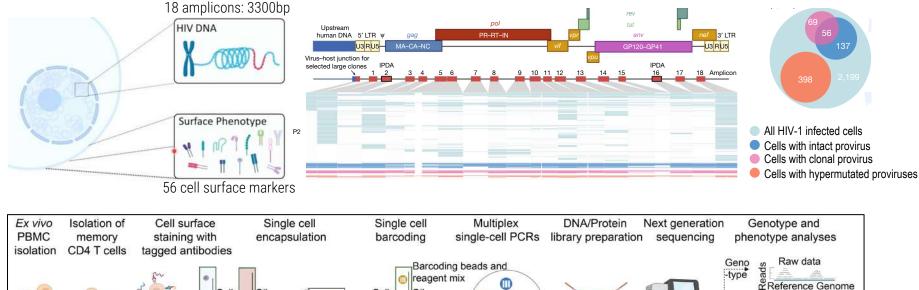
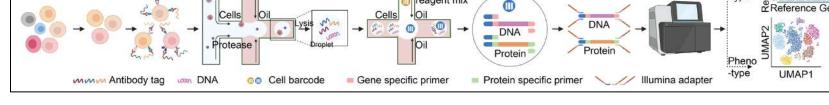
Basic and Translational Science CR0I2023

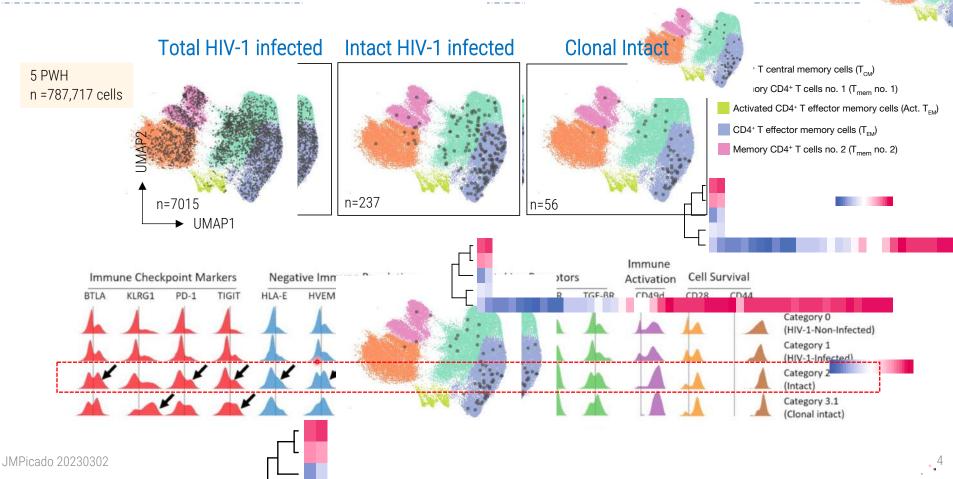
jmpicado@irsicaixa.es

The year of the "single-cell"

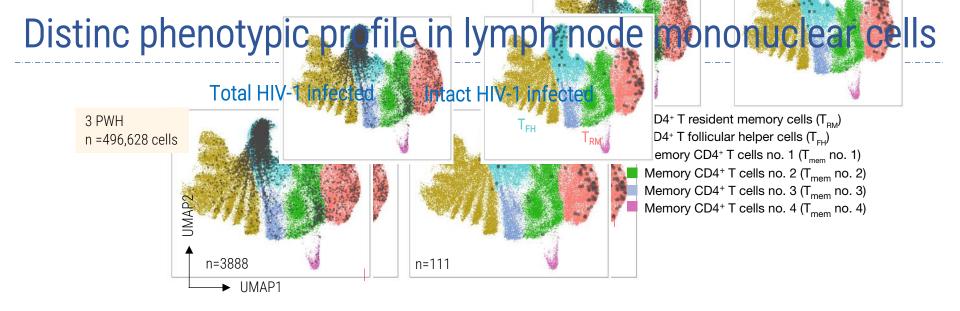

Oral Abstract Session-05 HIV RESERVOIRS AND CURE STRATEGIES #135

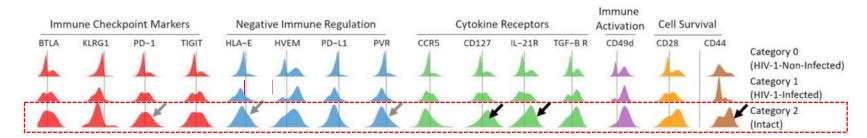

SINGLE-CELL PROTEOGENOMIC PROFILING OF HIV-1 RESERVOIR CELLS Weiwei Sun¹, Ce Gao¹, Ciputra A. Hartana¹, Matthew R. Osborn¹, Kevin B. Einkauf¹, Xiaodong Lian¹, Benjamin R. Bone¹, Nathalie Bonheur¹, Tae-Wook Chun², Eric S. Rosenberg³, Bruce D. Walker¹, Xu G. Yu¹, Mathias Lichterfeld¹ *Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA, ²National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA, ³Massachusetts General Hospital, Cambridge, MA, USA*

┻


Phenotyping and Proviral Sequencing (PheP-Seq)

Simultaneous detection of HIV-1 proviral sequence and surface phenotype at the single-cell level





Distinc phenoty

Blood Cel

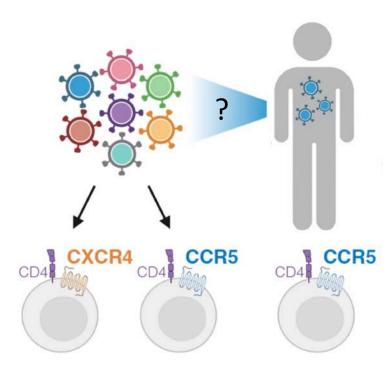
5

Conclusions

- PheP-Seq is capable of profiling the phenotypic features of <u>single HIV-1-infected cells</u> *ex-vivo*
- No major phenotypic differences between HIV-1-infected (defective) and non-infected cells
- After ~10 years of ART, cells harboring intact proviruses are enriched for <u>negative</u> <u>immunoregulatory</u> markers and <u>immune checkpoint</u> markers
- This phenotype may help reservoir cells with intact HIV-1 to <u>avoid</u> being exposed to and killed by host immune cells
- Data suggest that only HIV-1-infected cells with <u>optimal adaptation</u> to host immune activity or their specific tissue microenvironment can <u>survice long term</u>
- → Reservoir cells with intact HIV are subject to active immune selection pressure

Illuminating a long-term mystery

Oral Abstract Session-01 VIROLOGY/PATHOGENESIS

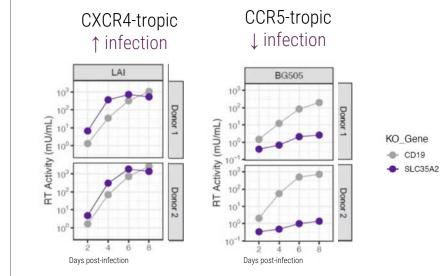

#105

HOST CELL GLYCOSYLATION DIFFERENTIALLY AFFECTS CCR5- AND CXCR4-TROPIC HIV-1 INFECTION

Hannah L. Itell¹, Julie M. Overbaugh²

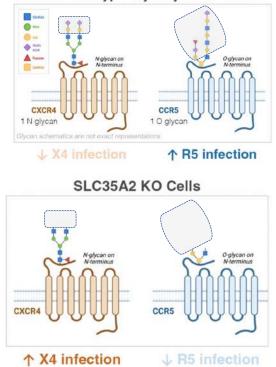
¹*Fred Hutchinson Cancer Research Center, Seattle, WA, USA, ²University of Washington, Seattle, WA, USA*

R5-tropic HIV bottleneck during transmission


Longstanding question in the HIV field:

What are the viral and host properties that drive preferential transmission of CCR5-tropic viruses?

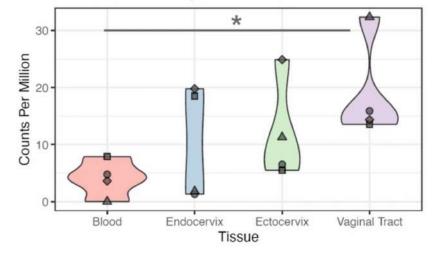
SLC35A2 is associated with R5-tropic infection


CRISPR KO screen for HIV restriction factors comparing R5-tropic vs. X4-tropic HIV

SLC35A2 KO has consistent, opposite effects on X4 vs. R5 HIV (primary CD4+ cells)

SLC35A2 encodes a transporter of UDP-galactose whose inactivation causes truncated glycans

Wildtype Glycosylation



SLC35A2 is more highly expressed in the lower Female Reproductive Tract than in blood

Bulk RNA-seq on CD4⁺ T Cells Matched sample types for 4 donors Davis et al., 2021 *Mucosal Immunol*

SLC35A2 Expression in CD4+ T cells

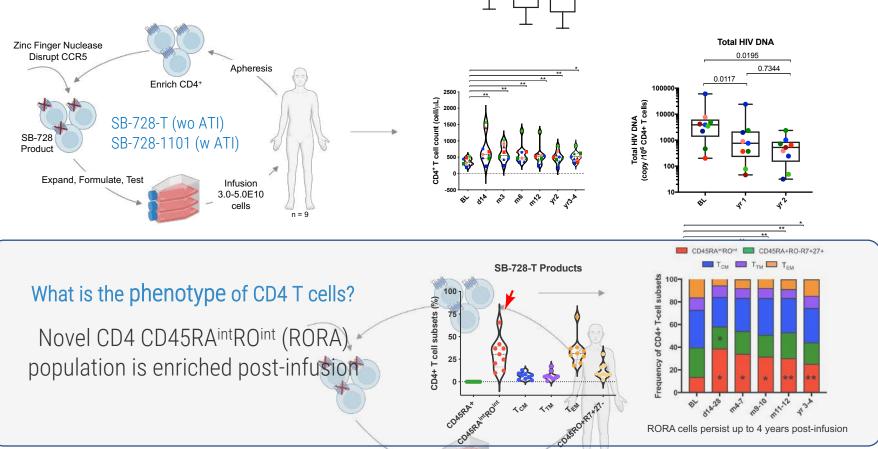
Increased SLC35A2 - Increased glycosylation - R5 selection at transmission sites

Conclusions

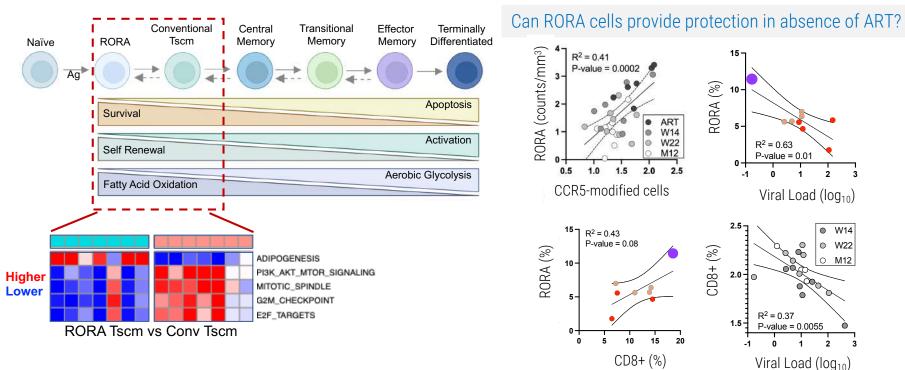
- Underappreciated role for <u>host cell glycans</u> on the infection of different tropic-HIV strains
- Wildtype <u>glycosylation promotes R5 infection</u> while hindering that of X4
- Putative role of <u>SLC35A2</u>, a gene required for normal glycosylation, which encodes a transporter of <u>UDP-galactose</u>. Its inactivation causes truncated glycans.
- Wildtype glycosylation may be even more pronounced in the <u>genital tract</u> due to elevated levels of SLC35A2, contributing to R5 selection at transmission sites

 \rightarrow The differential impact of host cell glycosylation on X4 and R5 viruses may therefore largely drive R5 selection during HIV transmission.

Gene/Cell Therapies

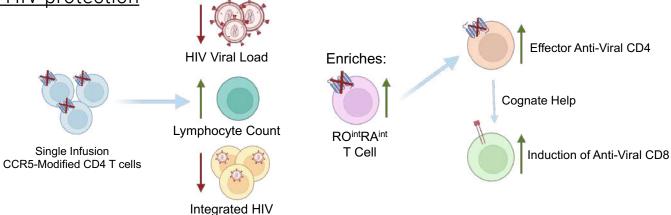

Oral Abstract Session-10 IMMUNOPATHOGENESIS AND VACCINES #182

SINGLE INFUSION OF STEM LIKE CCR5-MODIFIED CD4 T CELLS PROVIDE LONG-TERM HIV CONTROL


Ana B. Enriquez¹, Ashish Arunkumar Sharma¹, Joumana Zeidan², Gary Lee³, Slim Fourati¹, Khader Ghneim¹, Gabriela Sanchez¹, Francesco Procopio⁴, Robert Balderas⁵, Nicolas Chomont⁶, Dale Ando⁷, Steven G. Deeks⁸, Rafick P. Sékaly¹, Rémi Fromentin⁹

¹Emory University, Atlanta, GA, USA, ²CellCarta, Montreal, QC, Canada, ³Senti Biosciences, San Francisco, CA, USA, ⁴Lausanne University Hospital, Lausanne, Switzerland, ⁵BD Biosciences, San Diego, CA, USA, ⁶Université de Montréal, Montréal, Canada, ⁷Consultant, Walnut Creek, CA, USA, ⁸University of California San Francisco, San Francisco, CA, USA, ⁹Centre de Recherche du CHUM, Montreal, QC, Canada 5

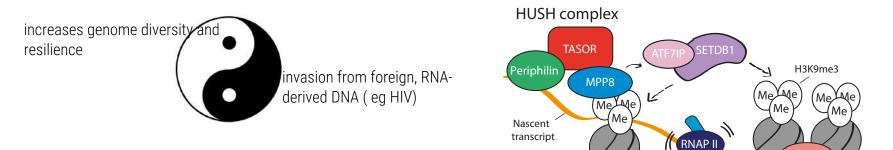
Autologous CCR5-modified T cells



RORA cells are distinct from conventional T stem cell memory subsets

Conclusions

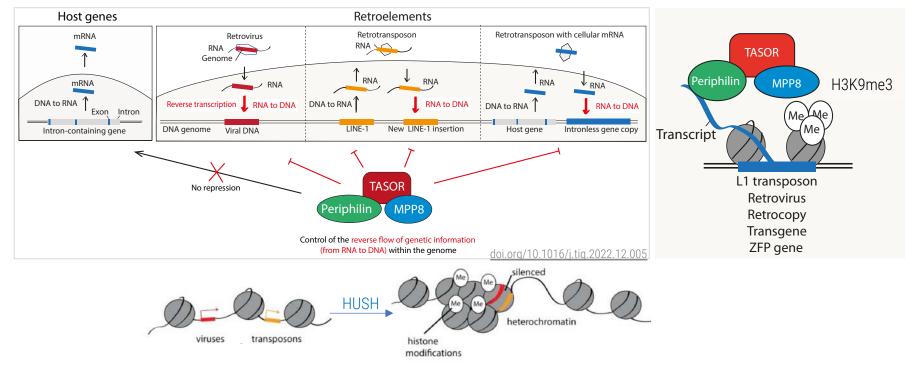
- Single infusion of CCR5-modified T cells enriches a novel RORA CD4 T cell population:
 - Have a <u>stem-like phenotype</u> (innately more "quiescent")
 - Correlate with <u>CCR5-modified</u> T cells
 - Can differentiate into <u>effector</u> cells that correlate with reduced viral load and effector CD8 T cells (in absence of ART)
 - Confer long-term HIV protection


PLENARY-03 WEDNESDAY PLENARY SESSION

#037

HOW THE HUSH COMPLEX PROTECTS YOUR GENOME FROM RNA-DERIVED RETROELEMENTS Paul J. Lehner Cambridge University, Cambridge, United Kingdom

Retrotransposition


- Reverse Transcriptase: RNA \rightarrow cDNA \rightarrow subsequent genome integration
- 40% of the human genome are retroelements (retroviruses/ retrotransposons)
- Retrotransposition is therefore tolerated, but needs to be closely regulated

- 'HUSH' (Human Silencing Hub): epigenetic transcriptional repressor complex which identifies and silences invading transgenes
 - It defends the genome from retroelement attack from outside the cell i.e. retroviruses (including HIV) and from within the cell (LINE1 retrotransposons)

How does HUSH discriminate 'self' from 'non-self' genomic DNA?

- HUSH recognizes 'intronless' DNA \rightarrow retroelements lack non-coding introns acting (~PAMPs)
- cDNA > \sim 1.5Kb, rich in adenine, and transcriptionally active

Biological relevance

- Novel component of the <u>innate immunosystem</u> → immunosurveillance of the genome, a compartment not thought to be accessible to the immune system (no cell killing!)
- Major <u>therapeutic</u> potential (beyond fundamental biological importance):
 - Strategies to express genes for a wide range of purposes have, somewhat unwittingly, been a battle against HUSH
 - HUSH inhibition has the potential to dramatically improve gene expression, and to release neo-antigens for cytotoxic T-lymphocyte recognition for immunotherapy
 - HIV?
 - Elite controllers
 - Long-term ART

MIMI ©

Intact HIV genome integrated in repressed/non-accessible genomic regions

Enrichment of the repressive histone feature H3K9me3 at intact-HIV integration sites

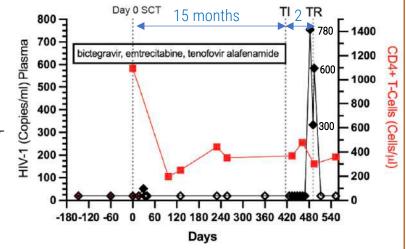
Clonal expansion of cells with intact HIV-1 integrated in heterochromatin regions

Jiang *et al.* Nature 2020 Lian *et al.* Cell Host and Microbes 2023

Conclusions

- HUSH → epigenetic transcriptional repressor complex which silences invading DNA
- HUSH defends the genome from <u>retroelement attack</u> from outside the cell i.e. retroviruses (including HIV) and from within the cell (LINE1 retrotransposons)
- Unique RNA-dependent genome surveillance system linking transcription to epigenetic gene silencing, by recognizing <u>'intronless' DNA</u>
- Major <u>therapeutic</u> potential: improve gene expression to release neo-antigens for cytotoxic Tlymphocyte recognition for immunotherapy, and maybe HIV ...
- → HUSH: "Molecular domestication" of retroviruses and retrotransposons

Bonys


Brief Communication

https://doi.org/10.1038/s41591-023-02213-x

In-depth virological and immunological characterization of HIV-1 cure after CCR5 Δ 32/ Δ 32 allogeneic hematopoietic stem cell transplantation

#434 HIV-1 Host Reservoir Reactivation after a CCR5A32/32 Allogeneic Stem Cell Transplant

- AML; 10/10 match, CCR5∆32
- Rapid full donor chimerism (in peripheral blood)
- Decrease in cell-associated DNA and RNA
- Decrease in ultrasensitive plasma viral load
- Rebounding viruses are CCR5-tropic
 - Residual R5-tropic HIV can persist in vivo even >1 year after SCT
 - Non clonal reactivation
- No increase in plasma HIV-associated antibodies
- No evidence of graft infection to date
- No data on tissues

